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Lot of effort for proving average-case hardness in TFNP under

various cryptographic assumptions [Pap94, Jěr16, BPR15, GPS16,

HY17, KS17, CHK+19a, CHK+19b, EFKP20, BG20]

Can hardness be based on an unstructured assumption of

(injective) OWF?
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Previous work

Hard-on-average distributions in TFNP

[BPR15, GPS16] OWF + iO

[HNY17] OWF + derandomization-style assumption

[KS17] iOWF + private-key FE

Impossibility results

[RSS17] many solutions from OWFs, CRHF, . . .

this work no simple construction from iOWFs
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Fully black-box construction of hard TFNP problem from iOWF

iOWF f

R(y)

C(i, s)

SOLVE(i)
i
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Fully black-box construction of hard TFNP problem from iOWF

• R,C are poly-time algorithms

• C is TFNP verifier

• R is security reduction

• Correctness: C is always total.

∀f ∀i ∃s : C f (i , s) = 1

• Security: If Solve always solves then R inverts with

nonnegligible probability.
∃p polynomial s.t. ∀f ∀Solve

if

∀i : Solvef (i) = s s.t. C f (i , s) = 1

then for infinitely many n ∈ N,

Pr
x←{0,1}n

[f (R f ,Solve(1n, f (x))) = f (x)] ≥ 1

p(n)
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Simple fully black-box construction of hard TFNP problem from

iOWF

f

R

C

SOLVE
1 query

stage 1

stage 2

many-one: At most 1 query to Solve

deterministic: Algorithm R is deterministic

f-oblivious: Queries R makes to Solve are independent of f
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Simple fully black-box construction of hard TFNP problem from

iOWF

f

R

C

SOLVE
nonadaptive

stage 1

stage 2

$

nonadaptive: Queries to Solve are nonadaptive

randomized: Algorithm R is randomized

f-oblivious: Queries R makes to Solve are independent of f
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Our results

Main theorem
There is no randomized fully black-box non-adaptive f -oblivious

construction of average-case hard TFNP problem from iOWF.

Special case of our Main theorem
There is no deterministic fully black-box many-one f -oblivious

construction of average-case hard TFNP problem from iOWF.
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Black-box separation - proof technique

The two oracle technique by [HR04] (goes back to [Sim98]):

Define an oracle O such that

1. iOWF exists with respect to O
2. TFNP is easy with respect to O
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OWP vs. iOWF

OWP

• Any OWP π : {0, 1}n → {0, 1}n gives rise to a

hard-on-average TFNP problem.

• For any y ∈ {0, 1}n, the preimage π−1(y) exists.

iOWF

• Simple reductions are impossible.

• For any iOWF f ∈ {0, 1}n → {0, 1}n+1, only y ∈ Im(f ) have

a preimage under f .
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How would a construction look like?

Computation of R f (y): . . . query Solve(iy ) . . .

Correctness: ∀f ∃s : C f (iy , s) = 1

Even for g such that y /∈ Im(g), some solution s must exists!

0n g(0n)

0n−11 g(0n−11)

1n g(1n)

0n f (0n)

0n−11 f (0n−11)

1n f (1n)

y

a a

bb

C g (i , s), C f (i , s) query only a, b, thus C g (i , s) = C f (i , s) = 1.

Solution s is useless for inverting challenge y .
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How to identify a useless solution?

Solve does not know the challenge y .

Security
The reduction is successful in inverting given access to any

algorithm Solve solving the TFNP problem.

Try to identify challenge y from the instance i by simulating the

reduction R on all possible challenges.
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Solve

SolvefR,C (i):

1. Compute set of protected Y =
{
y | R f (y) queries i

}
2. Compute set of solutions S =

{
s | C f (i , s) = 1

}

3. while True

3.1 If ∃s ∈ S s.t. preimage of any y ∈ Y is not queried, return s

3.2 Carefully remove some y ’s from Y .

Given access to (f ,Solve):

1. The TFNP problem is easy – Solve always returns a correct

solution

2. Reduction R does not invert f – incompressibility argument
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Conclusions

If it is possible to construct a hard TFNP problem from iOWF,

then the reduction must be quite involved.

Can we get the same impossibility result
• even without the f -obliviousness requirement or
• even when we allow nonadaptive queries to Solve?

Thank you for your attention.

ia.cr/2020/1162

13

https://eprint.iacr.org/2020/1162


Conclusions

If it is possible to construct a hard TFNP problem from iOWF,

then the reduction must be quite involved.

Can we get the same impossibility result
• even without the f -obliviousness requirement or
• even when we allow nonadaptive queries to Solve?

Thank you for your attention.

ia.cr/2020/1162

13

https://eprint.iacr.org/2020/1162


Conclusions

If it is possible to construct a hard TFNP problem from iOWF,

then the reduction must be quite involved.

Can we get the same impossibility result
• even without the f -obliviousness requirement or
• even when we allow nonadaptive queries to Solve?

Thank you for your attention.

ia.cr/2020/1162

13

https://eprint.iacr.org/2020/1162


Bibliography i

Nir Bitansky and Idan Gerichter.

On the cryptographic hardness of local search.

In 11th Innovations in Theoretical Computer Science

Conference, ITCS 2020, January 12-14, 2020, Seattle,

Washington, USA, pages 6:1–6:29, 2020.

Nir Bitansky, Omer Paneth, and Alon Rosen.

On the cryptographic hardness of finding a Nash

equilibrium.

In IEEE 56th Annual Symposium on Foundations of Computer

Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,

2015, pages 1480–1498, 2015.

14



Bibliography ii

Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath,
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