
On Average Case Hardness in TFNP

from One-Way Functions

TCC 2020

Pavel Hubáček Chethan Kamath Karel Král Veronika Sĺıvová

Computer Science Institute of Charles University

1



Lot of effort for proving average-case hardness in TFNP under

various cryptographic assumptions [Pap94, Jěr16, BPR15, GPS16,

HY17, KS17, CHK+19a, CHK+19b, EFKP20, BG20]

Can hardness be based on an unstructured assumption of

(injective) OWF?

2



Previous work

Hard-on-average distributions in TFNP

[BPR15, GPS16] OWF + iO

[HNY17] OWF + derandomization-style assumption

[KS17] iOWF + private-key FE

Impossibility results

[RSS17] many solutions from OWFs, CRHF, . . .

this work no simple construction from iOWFs

3



Fully black-box construction of hard TFNP problem from iOWF

iOWF f

R(y)

C(i, s)

SOLVE(i)
i

4



Fully black-box construction of hard TFNP problem from iOWF

• R,C are poly-time algorithms

• C is TFNP verifier

• R is security reduction

• Correctness: C is always total.

∀f ∀i ∃s : C f (i , s) = 1

• Security: If Solve always solves then R inverts with

nonnegligible probability.
∃p polynomial s.t. ∀f ∀Solve

if

∀i : Solvef (i) = s s.t. C f (i , s) = 1

then for infinitely many n ∈ N,

Pr
x←{0,1}n

[f (R f ,Solve(1n, f (x))) = f (x)] ≥ 1

p(n)

5

f

R

C

SOLVE



Fully black-box construction of hard TFNP problem from iOWF

• R,C are poly-time algorithms

• C is TFNP verifier

• R is security reduction

• Correctness: C is always total.

∀f ∀i ∃s : C f (i , s) = 1

• Security: If Solve always solves then R inverts with

nonnegligible probability.
∃p polynomial s.t. ∀f ∀Solve

if

∀i : Solvef (i) = s s.t. C f (i , s) = 1

then for infinitely many n ∈ N,

Pr
x←{0,1}n

[f (R f ,Solve(1n, f (x))) = f (x)] ≥ 1

p(n)

5

f

R

C

SOLVE



Fully black-box construction of hard TFNP problem from iOWF

• R,C are poly-time algorithms

• C is TFNP verifier

• R is security reduction

• Correctness: C is always total.

∀f ∀i ∃s : C f (i , s) = 1

• Security: If Solve always solves then R inverts with

nonnegligible probability.
∃p polynomial s.t. ∀f ∀Solve

if

∀i : Solvef (i) = s s.t. C f (i , s) = 1

then for infinitely many n ∈ N,

Pr
x←{0,1}n

[f (R f ,Solve(1n, f (x))) = f (x)] ≥ 1

p(n)

5

f

R

C

SOLVE



Simple fully black-box construction of hard TFNP problem from

iOWF

f

R

C

SOLVE
1 query

stage 1

stage 2

many-one: At most 1 query to Solve

deterministic: Algorithm R is deterministic

f-oblivious: Queries R makes to Solve are independent of f
6



Simple fully black-box construction of hard TFNP problem from

iOWF

f

R

C

SOLVE
nonadaptive

stage 1

stage 2

$

nonadaptive: Queries to Solve are nonadaptive

randomized: Algorithm R is randomized

f-oblivious: Queries R makes to Solve are independent of f
6



Our results

Main theorem
There is no randomized fully black-box non-adaptive f -oblivious

construction of average-case hard TFNP problem from iOWF.

Special case of our Main theorem
There is no deterministic fully black-box many-one f -oblivious

construction of average-case hard TFNP problem from iOWF.

7



Our results

Main theorem
There is no randomized fully black-box non-adaptive f -oblivious

construction of average-case hard TFNP problem from iOWF.

Special case of our Main theorem
There is no deterministic fully black-box many-one f -oblivious

construction of average-case hard TFNP problem from iOWF.

7



Black-box separation - proof technique

The two oracle technique by [HR04] (goes back to [Sim98]):

Define an oracle O such that

1. iOWF exists with respect to O
2. TFNP is easy with respect to O

8



OWP vs. iOWF

OWP

• Any OWP π : {0, 1}n → {0, 1}n gives rise to a

hard-on-average TFNP problem.

• For any y ∈ {0, 1}n, the preimage π−1(y) exists.

iOWF

• Simple reductions are impossible.

• For any iOWF f ∈ {0, 1}n → {0, 1}n+1, only y ∈ Im(f ) have

a preimage under f .

9



OWP vs. iOWF

OWP

• Any OWP π : {0, 1}n → {0, 1}n gives rise to a

hard-on-average TFNP problem.

• For any y ∈ {0, 1}n, the preimage π−1(y) exists.

iOWF

• Simple reductions are impossible.

• For any iOWF f ∈ {0, 1}n → {0, 1}n+1, only y ∈ Im(f ) have

a preimage under f .

9



How would a construction look like?

Computation of R f (y): . . . query Solve(iy ) . . .

Correctness: ∀f ∃s : C f (iy , s) = 1

Even for g such that y /∈ Im(g), some solution s must exists!

0n g(0n)

0n−11 g(0n−11)

1n g(1n)

0n f (0n)

0n−11 f (0n−11)

1n f (1n)

y

a a

bb

C g (i , s), C f (i , s) query only a, b, thus C g (i , s) = C f (i , s) = 1.

Solution s is useless for inverting challenge y .

10



How would a construction look like?

Computation of R f (y): . . . query Solve(iy ) . . .

Correctness: ∀f ∃s : C f (iy , s) = 1

Even for g such that y /∈ Im(g), some solution s must exists!

0n g(0n)

0n−11 g(0n−11)

1n g(1n)

0n f (0n)

0n−11 f (0n−11)

1n f (1n)

y

a a

bb

C g (i , s), C f (i , s) query only a, b, thus C g (i , s) = C f (i , s) = 1.

Solution s is useless for inverting challenge y .

10



How would a construction look like?

Even for g such that y /∈ Im(g), some solution s must exists!

0n g(0n)

0n−11 g(0n−11)

1n g(1n)

0n f (0n)

0n−11 f (0n−11)

1n f (1n)

y

a a

bb

C g (i , s), C f (i , s) query only a, b, thus C g (i , s) = C f (i , s) = 1.

Solution s is useless for inverting challenge y .

10



How would a construction look like?

Even for g such that y /∈ Im(g), some solution s must exists!

0n g(0n)

0n−11 g(0n−11)

1n g(1n)

0n f (0n)

0n−11 f (0n−11)

1n f (1n)

y

a a

bb

C g (i , s), C f (i , s) query only a, b,

thus C g (i , s) = C f (i , s) = 1.

Solution s is useless for inverting challenge y .

10



How would a construction look like?

Even for g such that y /∈ Im(g), some solution s must exists!

0n g(0n)

0n−11 g(0n−11)

1n g(1n)

0n f (0n)

0n−11 f (0n−11)

1n f (1n)

y

a a

bb

C g (i , s), C f (i , s) query only a, b, thus C g (i , s) = C f (i , s) = 1.

Solution s is useless for inverting challenge y .

10



How to identify a useless solution?

Solve does not know the challenge y .

Security
The reduction is successful in inverting given access to any

algorithm Solve solving the TFNP problem.

Try to identify challenge y from the instance i by simulating the

reduction R on all possible challenges.

11



How to identify a useless solution?

Solve does not know the challenge y .

Security
The reduction is successful in inverting given access to any

algorithm Solve solving the TFNP problem.

Try to identify challenge y from the instance i by simulating the

reduction R on all possible challenges.

11



How to identify a useless solution?

Solve does not know the challenge y .

Security
The reduction is successful in inverting given access to any

algorithm Solve solving the TFNP problem.

Try to identify challenge y from the instance i by simulating the

reduction R on all possible challenges.

11



Solve

SolvefR,C (i):

1. Compute set of protected Y =
{
y | R f (y) queries i

}
2. Compute set of solutions S =

{
s | C f (i , s) = 1

}

3. while True

3.1 If ∃s ∈ S s.t. preimage of any y ∈ Y is not queried, return s

3.2 Carefully remove some y ’s from Y .

Given access to (f ,Solve):

1. The TFNP problem is easy – Solve always returns a correct

solution

2. Reduction R does not invert f – incompressibility argument

12



Solve

SolvefR,C (i):

1. Compute set of protected Y =
{
y | R f (y) queries i

}
2. Compute set of solutions S =

{
s | C f (i , s) = 1

}
3. while True

3.1 If ∃s ∈ S s.t. preimage of any y ∈ Y is not queried, return s

3.2 Carefully remove some y ’s from Y .

Given access to (f ,Solve):

1. The TFNP problem is easy – Solve always returns a correct

solution

2. Reduction R does not invert f – incompressibility argument

12



Solve

SolvefR,C (i):

1. Compute set of protected Y =
{
y | R f (y) queries i

}
2. Compute set of solutions S =

{
s | C f (i , s) = 1

}
3. while True

3.1 If ∃s ∈ S s.t. preimage of any y ∈ Y is not queried, return s

3.2 Carefully remove some y ’s from Y .

Given access to (f ,Solve):

1. The TFNP problem is easy – Solve always returns a correct

solution

2. Reduction R does not invert f – incompressibility argument

12



Conclusions

If it is possible to construct a hard TFNP problem from iOWF,

then the reduction must be quite involved.

Can we get the same impossibility result
• even without the f -obliviousness requirement or
• even when we allow nonadaptive queries to Solve?

Thank you for your attention.

ia.cr/2020/1162

13

https://eprint.iacr.org/2020/1162


Conclusions

If it is possible to construct a hard TFNP problem from iOWF,

then the reduction must be quite involved.

Can we get the same impossibility result
• even without the f -obliviousness requirement or
• even when we allow nonadaptive queries to Solve?

Thank you for your attention.

ia.cr/2020/1162

13

https://eprint.iacr.org/2020/1162


Conclusions

If it is possible to construct a hard TFNP problem from iOWF,

then the reduction must be quite involved.

Can we get the same impossibility result
• even without the f -obliviousness requirement or
• even when we allow nonadaptive queries to Solve?

Thank you for your attention.

ia.cr/2020/1162

13

https://eprint.iacr.org/2020/1162


Bibliography i

Nir Bitansky and Idan Gerichter.

On the cryptographic hardness of local search.

In 11th Innovations in Theoretical Computer Science

Conference, ITCS 2020, January 12-14, 2020, Seattle,

Washington, USA, pages 6:1–6:29, 2020.

Nir Bitansky, Omer Paneth, and Alon Rosen.

On the cryptographic hardness of finding a Nash

equilibrium.

In IEEE 56th Annual Symposium on Foundations of Computer

Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,

2015, pages 1480–1498, 2015.

14



Bibliography ii

Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath,

Krzysztof Pietrzak, Alon Rosen, and Guy N. Rothblum.

Finding a Nash equilibrium is no easier than breaking

Fiat-Shamir.

In Proceedings of the 51st Annual ACM SIGACT Symposium

on Theory of Computing, STOC 2019, Phoenix, AZ, USA,

June 23-26, 2019, pages 1103–1114. ACM, 2019.

Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath,

Krzysztof Pietrzak, Alon Rosen, and Guy N. Rothblum.

PPAD-hardness via iterated squaring modulo a

composite.

IACR Cryptology ePrint Archive, 2019:667, 2019.

15



Bibliography iii

Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael

Pass.

Continuous verifiable delay functions.

In Advances in Cryptology - EUROCRYPT 2020 - 39th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,

Proceedings, Part III, volume 12107 of Lecture Notes in

Computer Science, pages 125–154, 2020.

16



Bibliography iv

Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan.

Revisiting the cryptographic hardness of finding a Nash

equilibrium.

In Advances in Cryptology - CRYPTO 2016 - 36th Annual

International Cryptology Conference, Santa Barbara, CA, USA,

August 14-18, 2016, Proceedings, Part II, pages 579–604,

2016.

Pavel Hubáček, Moni Naor, and Eylon Yogev.

The journey from NP to TFNP hardness.

In 8th Innovations in Theoretical Computer Science

Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA,

USA, pages 60:1–60:21, 2017.

17



Bibliography v

Chun-Yuan Hsiao and Leonid Reyzin.

Finding collisions on a public road, or do secure hash

functions need secret coins?

In CRYPTO, volume 3152 of Lecture Notes in Computer

Science, pages 92–105. Springer, 2004.

Pavel Hubáček and Eylon Yogev.

Hardness of continuous local search: Query complexity

and cryptographic lower bounds.

In Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2017, Barcelona,

Spain, Hotel Porta Fira, January 16-19, pages 1352–1371,

2017.

18



Bibliography vi

Emil Jěrábek.

Integer factoring and modular square roots.

J. Comput. Syst. Sci., 82(2):380–394, 2016.

Ilan Komargodski and Gil Segev.

From Minicrypt to Obfustopia via private-key functional

encryption.

In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, Paris, France, April 30 - May 4,

2017, Proceedings, Part I, pages 122–151, 2017.

19



Bibliography vii

Christos H. Papadimitriou.

On the complexity of the parity argument and other

inefficient proofs of existence.

J. Comput. Syst. Sci., 48(3):498–532, 1994.

Alon Rosen, Gil Segev, and Ido Shahaf.

Can PPAD hardness be based on standard cryptographic

assumptions?

In Theory of Cryptography - 15th International Conference,

TCC 2017, Baltimore, MD, USA, November 12-15, 2017,

Proceedings, Part II, volume 10678 of Lecture Notes in

Computer Science, pages 747–776. Springer, 2017.

20



Bibliography viii

Daniel R. Simon.

Finding collisions on a one-way street: Can secure hash

functions be based on general assumptions?

In Advances in Cryptology - EUROCRYPT ’98, International

Conference on the Theory and Application of Cryptographic

Techniques, Espoo, Finland, May 31 - June 4, 1998,

Proceeding, volume 1403 of Lecture Notes in Computer

Science, pages 334–345. Springer, 1998.

21


